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Design of FIR filter for DAC distortion compensation 

*Mahdi A. Hafi (m.hafi@uot.edu.ly) 
ABSTRACT 

Digital signal processing (DSP) has been and is still a major block in the design of 
many system applications. It is also involved in the manufacturing of 
equipment/devices in the fields of digital communications, digital control, ...etc. 
(Steven W. Smith, Robert Oshana 2012). In our physical world many signals are 
analog by nature, and this necessitates conversion process from one type to 
another. Conversion however, can lead to some information loss or may not be 
preserved. It can also result in signal distortion(James H. McClellan, et al). 
Depending on the accuracy and sensitivity of the information, extra steps maybe 
taken in the overall system design to compensate for the distortion and/or 
information loss. This paper will deal with an approach that would minimize this 
distortion through the design and implementation of FIR type digital filter. 

KEYWORDS: Digital-to-analog converter (DAC), Digital filter, FIR filter, Low-pass filter 
(LPF), Inverse Discrete Fourier Transform (IDFT), and discrete impulse response. 

INTRODUCTION 

When a band-limited signal is sampled at the rate required (Fig. 1) “ 𝑇 ≤ 𝜋/𝜔𝑐 
where ωc is the cutoff frequency of the signal”, then its discrete time Fourier 
transform is a periodic version with period of 2π, that is, (Alan V. Oppenheim,et al 
1975): 
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𝑋(𝑒𝑗𝜔𝑇) =
1

𝑇
∑ 𝑋𝑎 (𝑗𝜔 + 𝑗

2𝜋𝑟

𝑇
)

+∞

𝑟=−∞

                                         (1) 

where 𝑋𝑎(𝑗𝜔) is the Fourier transform of the analog signal as shown by Fig. 2. 
As can be seen from the same figure, if an analog low-pass filter with cutoff requency 
of 𝜔𝑐 is applied to the sampled signal  𝑥(𝑛𝑇), then an exact recovery of the original 
analog signal 𝑥𝑎(𝑡) is possible. True, if the sampled signal was somehow continuous in 
time, and since it is not, an in-between step has to take place. 
xa(t) x(nT) 

 

Figure 1: Signal xa(t) and its samples x(nT) 

 

 

 

Figure 2: Magnitude spectrum of signal Xa(jω) and its sampled version X(𝑒𝑗𝜔𝑇) 
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Using digital-to-analog converter (DAC) as shown by Fig. 3 is usually the way to 
convert from discrete time signal to continuous time signal, and in doing so and as a 
result, the Fourier transform of its staircase output signal is not the same as that of the 
input 𝑥(𝑛𝑇), (William D. Stanley. 1992). In an attempt to recover the original signal 
with minimum error, another filter characteristics other than that of a low-pass should be 
used in order to compensate for the “frequency response distortion” introduced by DAC. 

 
Figure 3: Typical conversion process of digital signal to analog signal. 

DESIGN OF A DIGITAL FILTER 

Fig. 4 shows a block diagram of an analog signal to be recovered from its 
samples using, digital filter, DAC, and a low-pass filter. Here, the digital filter is to 
compensate for the “frequency response distortion introduced by DAC”. In order to 
derive the characteristic of the digital filter, the original signal is assumed to be band-
limited with a cutoff frequency ωc and sampled at the required rate T.  Knowing that:  
𝑋(𝑒𝑗𝜔𝑡) =

1

𝑇
𝑋𝑎(𝑗𝜔)  for −

𝜋

𝑇
≤ 𝜔 ≤

𝜋

𝑇
 and 𝑥𝑎(𝑡 = 𝑛𝑇) = 𝑥(𝑛𝑇) where n is an integer, 

then from the block diagram shown in Fig. 4, 

 
Figure 4: Adding digital filter to the conversion process from digital to analog signal. 

 
𝑋𝑎(𝑗𝜔) = 𝐻2(𝑗𝜔)𝑌𝑠(𝑗𝜔)         𝑓𝑜𝑟        |𝜔| ≤ 𝜔𝑐 

where 
𝐻2(𝑗𝜔) = {

1, |𝜔| ≤ 𝜔𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This implies that 
𝑌𝑠(𝑗𝜔) = 𝑋𝑎(𝑗𝜔)          𝑓𝑜𝑟        |𝜔| ≤ 𝜔𝑐                          (2) 
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Since  𝑦𝑠(𝑡) = 𝑦(𝑛𝑇)  for   𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇   then,  

𝑌𝑠(𝑗𝜔) = ∫ 𝑦𝑠(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡                    
+∞

−∞

= ∑ ∫ 𝑦(𝑛𝑇)𝑒−𝑗𝜔𝑡𝑑𝑡
(𝑛+1)𝑇

𝑛𝑇

∞

𝑛=−∞

= ∑ 𝑦(𝑛𝑇) ∫ 𝑒−𝑗𝜔𝑡𝑑𝑡
(𝑛+1)𝑇

𝑛𝑇

∞

𝑛=−∞

= 𝑇 𝑠𝑖𝑛𝑐 (
𝜔𝑇

2
) 𝑒−𝑗𝜔𝑇/2  ∑ 𝑦(𝑛𝑇)𝑒−𝑗𝑛𝜔𝑇

∞

𝑛=−∞

 

 
since     𝑌(𝑒𝑗𝜔𝑇) = ∑ 𝑦(𝑛𝑇)𝑒−𝑗𝑛𝜔𝑇∞

𝑛=−∞ , then 
 
𝑌𝑠(𝑗𝜔) = 𝑇 𝑠𝑖𝑛𝑐(𝜔𝑇

2
)𝑒−𝑗𝜔𝑇

2  𝑌(𝑒𝑗𝜔𝑇)                              (3) 
from Eq. (1), 

𝑋𝑎(𝑗𝜔) = 𝑇 𝑠𝑖𝑛𝑐 (𝜔
𝑇

2
) 𝑒−𝑗𝜔𝑇

2  𝑌(𝑒𝑗𝜔𝑇)     𝑓𝑜𝑟       |𝜔| ≤ 𝜔𝑐 

Also, from the block diagram in Fig. 4, 𝑌(𝑒𝑗𝜔𝑇) = 𝐻1(𝑒𝑗𝜔𝑇)𝑋(𝑒𝑗𝜔𝑇), which leads to  

𝑋𝑎(𝑗𝜔) = 𝑇 𝑠𝑖𝑛𝑐 (𝜔
𝑇

2
) 𝑒−𝑗𝜔𝑇

2  𝐻1(𝑒𝑗𝜔𝑇)𝑋(𝑒𝑗𝜔𝑇)     𝑓𝑜𝑟       |𝜔| ≤ 𝜔𝑐 

We also have from Eq. (1), 𝑋(𝑒𝑗𝜔𝑇) =
1

𝑇
𝑋𝑎(𝑗𝜔)  for    |𝜔| ≤ 𝜔𝑐 and so 

 

                                                                                                       (4)        

 
For |𝜔| ≤ 𝜔𝑐 . Note that the term (𝑇 𝑠𝑖𝑛𝑐(𝜔𝑇

2
)𝑒−𝑗𝜔𝑇

2) in Eq. (3) is the frequency 
response distortion introduced by the DAC. If one were to investigate the digital filter 
transfer function derived in Eq. (4), he would find that it represents one period of a 
continuous periodic spectrum in 2𝜋 of a sampled signal 𝑥𝑎(𝑡). If, however, the 
frequency response in Eq. (4) is treated as non-periodic, then the signal can be 

𝐻1(𝑒𝑗𝜔𝑇) =
𝑒𝑗𝜔𝑇

2

𝑠𝑖𝑛𝑐(𝜔𝑇
2
)
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considered as continuous and its inverse Fourier transform will yield the impulse time 
response ℎ(𝑡). The inverse Fourier transform is given by 

ℎ(𝑡) = ∫
𝜔𝑒𝑗𝜔

2

2𝑠𝑖𝑛𝑐(𝜔
2 )

 𝑒𝑗𝜔𝑡𝑑𝜔

𝜔𝑐

−𝜔𝑐

 

 
and it is indefinite. This means that finding the transfer function will not be in simple 
form and for us this rule out the implementation and design of an IIR filter. For this 
particular issue then, two sought design methods based on FIR filter implementation are 
discussed. Since the transfer function in Eq. (4) has even magnitude and odd phase 
response as shown by Fig. 5, the coefficients of ℎ(𝑛) are then real(Gabel, & 
Roberts.1980). To determine the finite sequence of ℎ(𝑛), of the FIR filter, two methods 
based on frequency sampling realization are considered. 

 

Figure 5: Magnitude and phase plot of  𝐻(𝑒𝑗𝜔𝑇) = 𝑒𝑗𝜔𝑇
2 𝑠𝑖𝑛𝑐(𝜔𝑇

2
)⁄  for |𝜔𝑇| ≤ 𝜋  



 
 
 
 
 
 
 
 

 
 

     Issue 25                                           AL   ـــ OSTATH                                FALL 2023 
 

19 
 

1- Sampling of H(z) method 

  It can be shown that for any sampled signal, its periodic frequency spectrum 
can be related to its frequency samples “H(k)” and for N number of samples that 
occur every 𝜔𝑘 = 2𝜋𝑘

𝑁𝑇
,  (Alan V. Oppenheim,et al 1975), by 

𝐻(𝑒𝑗𝜔𝑇) = (1 − 𝑒−𝑗𝜔𝑇𝑁)
1

𝑁
∑

𝐻̃(𝑘)

1 − 𝑒𝑗2𝜋𝑘
𝑁𝑇 𝑒𝑗𝜔𝑇

𝑁−1

𝑘=0

                               (5) 

With the fact that ℎ(𝑛) is real, that is |𝐻(𝑘)| = |𝐻(𝑁 − 𝑘)| and  𝜃(𝑘) = 𝜃(𝑁 − 𝐾), 
then Eq. (5) can be rewritten for N even as 

𝐻(𝑒𝑗𝜔𝑇) = (1 − 𝑒−𝑗𝜔𝑇𝑁) {∑
2|𝐻̃(𝑘)|

𝑁
 𝐻𝑘(𝑒𝑗𝜔𝑇) +

𝐻̃(0)

1 − 𝑒−𝑗𝜔𝑇
−  

𝐻̃(𝑁
2)

1 − 𝑒−𝑗𝜔𝑇
 

𝑁
2

−1

𝑘=1

}       (6) 

where  

𝐻𝑘(𝑒𝑗𝜔𝑇) =
cos(𝜃(𝑘)) − [cos(𝜃(𝑘) − 2𝜋𝑘

𝑁 )] 𝑒−𝑗𝜔𝑇

1 − 2 cos(2𝜋𝑘
𝑁 ) +  𝑒−𝑗2𝜔𝑇

 

 
The filter magnitude and phase plots are shown in Fig. 6, and it’s  realization  is shown in Fig. 7  

for N = 16. Where 

𝑇 = cos (𝜃(𝑘) −
2𝜋𝑘

𝑁
) ,   𝑆 = cos(𝜃(𝑘)), and  𝐺 = 2 cos(

2𝜋𝑘

𝑁
). 

|H(k)| 
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∠H(k) 

 

Figure 6: Magnitude and phase of  𝐻(𝑘) = 𝐻(𝑒𝑗𝜔𝑇)|
𝜔=

2𝜋𝑘

𝑁𝑇

  , and N = 16 

 

Figure 7: FIR filter diagram with (N=16)  

2- Using IDFT method 

Since the frequency samples “H(k)” can be obtained simply by the relation 
𝐻(𝑘) = 𝐻(𝑒𝑗𝜔𝑇)|

𝜔𝑘=2𝜋𝑘
𝑁𝑇

 , then the coefficients of h(n) can be determined by using the 
inverse discrete Fourier transform “IDFT” i.e.,  
ℎ(𝑛) =

1

𝑁
∑ 𝐻(𝑘)𝑒𝑗

2𝜋𝑘𝑛

𝑁𝑁−1
𝑘=0    where 𝑘 = 0,1,2, … , 𝑁 − 1, and 𝑁 is the number of 
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samples. For this particular filter then, 
 

ℎ(𝑛) =
1

𝑁
 ∑

𝑒𝑗𝜋𝑘
𝑁

𝑠𝑖𝑛𝑐(𝜋𝑘
𝑁 )

𝑁−1

𝑘=0

 𝑒𝑗2𝜋𝑘𝑛
𝑁

=
1

𝑁
 ∑

𝑒𝑗
𝜔𝑘𝑇

2

𝑠𝑖𝑛𝑐(𝜋𝑘
𝑁 )

𝜔𝑐

𝜔𝑘=−𝜔𝑐

 𝑒𝑗𝑛𝜔𝑘𝑇

 

 

where  𝜔𝑘 = 2𝜋𝑘

𝑁𝑇
, and 𝑘 = 0,1,2, … , 𝑁 − 1. 

Once the filter coefficients are determined, its output y(n) is related to its input x(n) by 
the relation y(n) = x(n) ∗ h(n) =∑ ℎ(𝑘)𝑥(𝑛 −  𝑘)𝑁−1

𝑘=0 . The realization of such relation is 
called the Direct-Form as show by Fig. 8. 

 

 
Figure 8: FIR filter Direct-Form realization (N=16) 
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Table 1: FIR filter h(n) coefficients (N=16) 
 

n h(n)  n h(n) 
0 
1 
2 
3 
4 
5 
6 
7 

00.5128 
0.5128 
0.0922 
-0.1449 
-0.0069 
0.0913 
-0.0247 
-0.0653 

8 
9 
10 
11 
12 
13 
14 
15 

0.0456 
0.0456 
-0.0653 
-0.0247 
0.0913 
-0.0069 
-0.1449 
0.0922 

 
Tests & Observations: 

Using MATLAB(Roberts, M.J. 2012& DIMITRIS et al), the following filter was 
implemented as shown in the network of Fig. 9. Selecting Direct-Form, and from a 
practical point of view, with specification of (ωc = 1k rad/s, N = 16, and 𝑇 = 𝜋/2𝜔𝑐). 
The system is subjected to a band-limited signal input x(m). It is chosen to be of the 
form 𝑥(𝑚) = sin(𝜔𝑜𝑚𝑇)/𝜋𝑚𝑇, where ωo is the cutoff frequency of the input signal, M 
the number of input samples, and T is the sampling period. The input signal and its 
frequency response are plotted as shown by Fig. 10 where ωo is chosen to be 500 
rad/s (a value less than that of the filter ωc = 1k rad/s) and T to be the same as that of 
the filter (𝑇 = 𝜋/2𝜔𝑐) since the later has a larger cutoff frequency. The output results of 
the system are almost as expected and as shown by the plots. In general, the larger the 
number of samples M i.e., (reducing the truncation error), the closer is the frequency 
response to that of the analog signal 𝑋𝑎(𝑗𝜔). Note that for a reasonable number of 
samples such as M = 16, the truncation error is small in a way that the magnitude 
frequency response of 𝑋(𝑒𝑗𝜔𝑇) is much like the actual one  𝑋𝑎(𝑗𝜔). Note also, that the 
filter itself is truncated and the larger the number of n, the better would be the response, 
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but from practical point of view that one should have such a filter that is as satisfactory 
and as simple as possible. The previous results dealt with the case of band-limited 
signal, but in real life applications, this is not the case and so it would be proper to test 
for signals that are not band-limited. Choosing x(m) to be of the form; 𝑥(𝑚) =

𝜔𝑜 𝑒𝜔𝑜𝑚𝑇, where ωo is the upper 3db frequency and T  is the same as that of the filter 
for the same reason mentioned earlier (𝑇 = 𝜋/2𝜔𝑐). Since the signal is not band-
limited, ωo is chosen to be much smaller than that of the of the filter for better results. 
ωo is chosen to be ten times less (ωo = 100 rad/s). Here, again there is truncation error 
and also aliasing error due to the fact that the signal is not band-limited. It is worth 
noticing and as shown by Fig. 11, that for M=16, the shape of the magnitude response 
of 𝑋(𝑒𝑗𝜔𝑇) follows almost exactly as that of 𝑋𝑎(𝑗𝜔) for at least a wide range of 
frequencies. One can conclude then that for a reasonable number of samples (M = 16), 
the errors are still small and the overall response is pretty much like that of the original 
analog signal 𝑥𝑎(𝑡). 

staircase 

 
 

 

Fig. 9: Block diagram of the system realization and its implementation flow chart  
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CONCLUSION 

Digital filter (FIR type) was designed to compensate for the distortion caused by 
Digital-to-Analog converters. Two sample input signals were tested. One was band-
limited signal, and the other was not. In either case the output of the system, which is 

xa(t), x(mT ) 

 
 
 

 

t 
 

 
|Xa(j )|, |X(e    )| 

 
 
 
 
 
 
 
 

 
  r/s 

0 500 1000 2000 3000 4000 
0 π/4 π/2 π 3π/2 2π 

Fig. 10: signals xa(t), x(mT ), | Xa(j )| , and | X(e    )|  
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Fig. 11: signals xa(t), x(mT ), | Xa(j )| , and | X(e    )|  
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the converted back analog signal, was successfully recovered with minor discrepancies 
that are caused by truncation and aliasing errors. 
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